
Post 5: Pivotal and Ribbon Categories

In this fourth post I will �nish Chapter 3 of Chris Heunen and Jamie Vicary's
Categories for Quantum Theory. Here I will introduce the series of additional
types of categories stemming from the presence of duals. This includes pivotal
categories which are equipped with monoidal natural transformations from ob-
jects to their double duals, i.e. have an identi�cation between taking the dual
of the dual, and doing nothing. Another important structure I'll introduce to-
day is that of balanced monoidal categories which are equipped with the ability
to �twist� wires, as well as ribbon categories, for which wires behave rather as
ribbons in 3D space.

1 Pivotal and Balanced Categories

De�nition (Pivotal category) A monoidal category with right duals is pivotal
when it is equipped with a monoidal natural transformation πA : A→ A∗∗.

In particular, πA must satisfy

A∗∗ ⊗B∗∗ (A⊗B)∗∗

A⊗B
πA ⊗ πB

ϕA,B

πA⊗B
πI = ψ

where ϕA,B and ψ : I → I∗∗ are the canonical isomorphisms arising from
the double dual lemma.

Lemma (Invertibility of πA) In a pivotal category, the morphisms πA : A →
A∗∗ are invertible.

Observation In a pivotal category, one has additional cups and caps
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Lemma (Sliding) In a pivotal category, for all morphisms f : A→ B :

Proof The proof of the sliding theorem proceeds graphically as

The other equality is proved analogously.

Observation A pivotal structure essentially says that taking right duals twice
is equivalent to doing nothing. However, since taking left and right duals are
inverse processes, then a pivotal structure can also be interpreted as an equiva-
lence between left duals and right duals.
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Theorem (Left duals exist in a pivotal category) In a pivotal category, every
object has a left dual.

Proof Due to the existence of the morphism πA, we have

The other axiom for left duality is proved similarly.

Theorem (Correctness of the graphical calculus for a pivotal category) In
a pivotal category, a well-formed equation between morphisms follows from the
axioms if and only if it holds in the graphical language up to planar oriented
isotopy.

The key new feature of this correctness theorem is the word oriented, i.e. a
valid isotopy must preserve the arrows in the wires of any diagram.

Observation In the presence of a braiding, pivotal structure can be expressed
in terms of a twist. This pushes us to the concept of a balanced monoidal
category.

De�nition (Balanced monoidal category) A braided monoidal category is
called balanced when it is equipped with a natural isomorphism θA : A → A
called a twist, satisfying the equations
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Observation Every symmetric monoidal category admits the trivial twist θA =
idA.

Theorem (Equivalence of pivotality and balance in braided monoidal cate-
gories) In a braided monoidal category with right duals, a pivotal structure
uniquely induces a twist structure, and vice-versa.

Proof Givevn right duals for every object A, and a twist structure θA, we can
de�ne the following pivotal structure πA

πA is by construction a morphism from A to A∗∗. To show that it is a pivotal
structure, it then su�ces to show that it is natural and monoidal. Let's �rst
show that it is a monoidal transformation
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Now let's show that it is a natural transformation

Conversely, given a pivotal structure πA, a balanced structure, or a twist,
can be de�ned as

We then have to prove the balanced equation, which we can do by expanding
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De�nition (Compact category) A compact category is a pivotal symmetric
monoidal category where the canonical twist is the identity θA = idA.

Observation Any symmetric monoidal category in which every object has a
right dual is compact in a canonical way.

Lemma In a compact category, the following equations hold
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Proof Let us prove some the second equality in a diagrammatic fashion. We
have

Proofs for the other equalities can be similarly obtained.

2 Ribbon Categories

When using the graphical calculus for braided pivotal categories, one must be
careful with loops on a single strand. Indeed, the correctness of the graphical
calculus does not imply that a loop must equal the identity, and this is because
the correctness theorem only allows for planar oriented isotopy, not spatial ori-
ented isotopy.

Therefore loops cannot be generically removed. In fact, a loop on a single
strand is related to the twist.
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Lemma (Loop = Twist) In a braided pivotal category, the following equations
hold

Proof The �rst equality stems directly from the de�nition of the twist in terms
of the pivotal structure. The equation for θ−1 can be veri�ed by computing

Due to the uniqueness of inverses in a category, the expression for θ must be
correct. As for the graphical form of θ∗, we have
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De�nition (Ribbon category) A ribbon category is a balanced monoidal cat-
egory with duals, such that (θA)

∗
= θA∗ .

Lemma A balanced monoidal category is a ribbon category if and only if either
of the following equations are satis�ed

Proof This follows directly from the de�nition of the twist in a braided pivotal
category as given above.

Lemma A compact category is a ribbon category.

Lemma In a ribbon category, the following equations hold
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Proof All of these equalities are consequences of the de�nitions of θ, θ∗, θ−1

and
(
θ−1

)∗
.

Observation These are the equations we would expect to be satis�ed by rib-
bons in an ambient 3D space. This is made precise by the correctness theorem
for ribbon categories.

Theorem (Correctness of the graphical calculus for ribbon categories) A
well formed equation between morphisms in a ribbon category follows from the
axioms if and only if it holds in the graphical language up to framed isotopy in
3D. Framed isotopy means that strands are thought of as ribbons rather than
wires.

Lemma In a symmetric ribbon category θ ◦ θ = id.

Proof Graphically, we have
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3 Dagger duality

Lemma In a monoidal dagger category L ⊣ R⇔ R ⊣ L.

Proof This follows directly from the axiom (f ⊗ g)
†
= f† ⊗ g† for monoidal

dagger categories.

De�nition (Dagger dual) In a dagger category with a pivotal structure, a
dagger dual is a duality A ⊣ A∗ witnessed by morphisms η : I → A∗ ⊗ A and
ε : A⊗A∗ → I that satisfy

Lemma In a dagger pivotal category with a pivotal structure, dagger duals
are unique up to unique unitary isomorphism.

Proof Given dagger duals (L ⊣ R, η, ε) and (L ⊣ R′, η′, ε′) , we have the iso-
morphism R ≃ R′ given by

Then, we can show that this is a co-isometry as
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De�nition (Dagger pivotal category) A dagger pivotal category is a monoidal
category with a pivotal structure, such that the chosen right duals are all dagger
duals.

Proposition The pivotal structure in a dagger pivotal category is given by the
composite

Proof The proof proceeds graphically as
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Proposition In a dagger pivotal category, the pivotal structure is unitary

Proof Using the canonical isomorphism ϕA,A∗ , we can write
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which completes the proof.

Observation Dagger pivotal categories have a graphical calculus where the
dagger acts as re�ection along a horizontal axis.

Lemma In a dagger pivotal category, the following equations hold

Proof We proceed graphically as
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The second equation follows by the fact that the cup determines the cap,
proved in the previous blog post.

Lemma (The dagger and dual functors commute) In a dagger pivotal cate-

gory, every morphism f satis�es (f∗)
†
=

(
f†

)∗
.

Proof We can compute both sides

And since the results are isotopic, then we have proved the equality.

De�nition (Conjugation) On a dagger pivotal category, conjugation (·)∗ is the
composite of the dagger functor and the right-dual functor

(·)∗ := (·)∗† = (·)†∗ . (1)

Observation Conjugation is denoted graphically by re�ection along a vertical
axis.
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De�nition (Ribbon dagger category) A ribbon dagger category is a braided
dagger pivotal category with unitary braiding and twist.

De�nition (Compact dagger category) A compact dagger category is a sym-
metric dagger pivotal category with unitary symmetry and θ = id.

4 Traces

De�nition (Trace) In a pivotal category, the trace of a morphism f : A → A
is the following scalar

It is denoted by tr (f) or trA (f).

De�nition (Dimension) The dimension of an object A is the scalar dimA =
tr (idA). Graphically it reads
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Lemma (Cyclic property of the trace) In a pivotal category, trA (g ◦ f) =
trB (f ◦ g) for f : A→ B and g : B → A.

Proof Graphically

Lemma (Properties of the trace) In a pivotal monoidal category, the trace
has the following properties

1. trA (f + g) = trA (f) + trA (g) for any superposition rule +

2. trA⊕B

(
f g
h j

)
= trA (f) + trB (j) if there are biproducts

3. trI (s) = s for any scalar s : I → I

4. trA (0A,A) = 0I,I if there is a zero object

5. trA⊗B (f ⊗ g) = trA (f) ◦ trB (g) in a braided pivotal category

6. (trA (f))
†
= trA

(
f†

)
in a dagger pivotal category

Lemma (Properties of dimensions) In a braided pivotal category, the follow-
ing properties hold

1. dim (A⊕B) = dimA+ dimB if there are biproducts

2. dim (I) = idI

3. dim (0) = 0I,I if there is a zero object

4. A ≃ B ⇒ dimA = dimB

5. dim (A⊗B) = dimA ◦ dimB
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5 More to come

In the next post I will move on to introducing notions necessary for reading the
paper �An invitation to topological orders and category theory� by Kong and
Zhang. In particular, I will focus on C−linear categories, simple and semisimple
C−linear categories and their interaction with all other types of structures we
have introduced so far. This will lead naturally into the de�nition of (unitary)
fusion categories, and modular tensor categories right after, which set the stage
for building up the physical picture of topological order, coming up in the post
after the next.


