
Post 1: Basic notions of category theory,

and what's to come

T. V. C. Antão

In this �rst blog post (and some uncertain amount of future posts) I hope to
delve a bit into something I've always been curious about, but have only recently
read a bit into, namely, the subject of category theory. Now, this is something
which does not have any particularly strong connection with the research I'm
doing at the moment, and indeed, for the kind of physics I do everyday, cate-
gory theory seems like a hopelessly abstract toolkit which is practically useless.
However, it has become clear to me, by reading some abstracts and skimming
through papers on the arXiv by Xiao-Gang Wen, Kitaev, and a lot of other
people, along with �nding the nLab and John Baez's stu�, that this area of
mathematics is extremely important in a variety of extremely captivating and
fundamental topics in physics, like topological quantum �eld theory, knots and
many theoretical aspects within condensed matter. Of particular interest to me
is the notion of topological order, topological quantum computation, anyons,
the fractional quantum hall e�ect, etc.

I will hopefully cover a lot of di�erent cool stu� while I focus on category
theory in this blog. For starters, thanks to my lovely girlfriend, I've had the
chance to follow along a course on quantum logic, in which categorical quantum
mechanics was a main topic of discussion. So, in some following posts I hope to
write down some of the things I've been reading about, namely how category
theory comes into play in foundations of quantum mechanics, quantum infor-
mation, and models for quantum computation such as the measurement based
approach. I will follow �rst the book of Chris Heunen and Jamie Vicary called
�Categories for Quantum Theory - An introduction�, but I might sprinkle in
some other stu� from Coecke's and Kissinger's �Picturing Quantum Processes�.
Nevertheless I will most de�nitely get to covering the more solid-state-centric
concepts and topological order eventually.

I should also note that these blog posts may have a fairly self-centered pur-
pose, and will always be very unpolished. Mainly, they are just about me
presenting my reading and coalescence of thoughts on certain topics. Things
may not always be very clear or self-contained and mistakes will be unavoidable:
Such is the learning process, which is what I hope to document here. Hopefully
they will be mostly correct! Anyway, if anyone ever ends up reading these things
and wishes to discuss or correct something I've written, feel free to contact me.

Ok, so what will I talk about today? The main point is to introduce some
ideas of category theory: The concept of a category, the notion of functors,
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equivalences, natural transformations, and universal properties, such as prod-
ucts and coproducts, initial and terminal objects, as well as equalizers and
kernels. This sets up the basics for the next, hopefully more interesting post,
which will be about monoidal categories.

1 Categories, functors and natural transformations

Let's start with the de�nition of a category:

De�nition: A categoryC is made up of:

• A collection of objects Ob(C);

• For every pair of objects A,B ∈ Ob(C), a collection of morphismsC(A,B)
with domain A and codomain B. Such a morphism is an arrow f : A → B,
when f ∈ C(A,B). Sometimes this is also written Hom(A,B) and called
the Hom-set.

Such that:

• There exists an identity endomorphism (an arrow from an object to itself)
for every A, i.e. ∀A ∈ Ob(C) : ∃idA : A → A;

• There is a composition of arrows, i.e. ∃◦ : C(A,B)×C(A,B) → C(A,B)
with ∀f ∈ C(A,B),∀g ∈ C(A,B) : ∃g◦f : A → C, such that ∀A,B,C,D ∈
Ob(C),∀f : A → B, ∀g : B → C,∀h : C → D:

1. h ◦ (g ◦ f) = (h ◦ g) ◦ f ;
2. f ◦ idA = f = idB ◦ f .

So, in words, a category is a family of objects with arrows between these ob-
jects. The arrows can be composed, and there exists a distinguished arrow for
every object, called the identity, which when composed with another arrow does
nothing. The axioms of a category can be expressed in terms of commutative
diagrams

A B

C D

f

g

h

g ◦ f h ◦ g

A A

B B

f

f

idA idBf

Commutative diagrams are everywhere in category theory literature. They
sometimes make proofs easier to read and reason about. Now, the �agship
example of a category is Set, which is the category where objects are sets and
morphisms are functions between sets. Composition is de�ned in the usual way,
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of course: Given f : A → B and g : B → C, their composition is g ◦ f : A → C
where for every a ∈ A, g ◦ f(a) = g(f(a)). The identity is simply idA(a) = a for
every set A and element a ∈ A.

Another example of a category is Rel, which is the category of relations,
with objects being sets, and morphisms being relations. What are relations?
Given two sets A and B a relation is a subset R ⊆ A× B. The idea is that an
element a ∈ A is related to an element b ∈ B if (a, b) ∈ R. Composition is a bit
more tricky, with R : A → B and S : B → C being composed as

R ◦ S = {(a, c) ∈ A× C|∃b ∈ B : (a, b) ∈ R, (b, c) ∈ S} .
In other words, an object a is related to an object c via R ◦ S if there is an
intermediate object b in B such that a is related to b and b is related to c. It
puts us in mind of the transitivity property of equivalence relations. Another
interesting one is Hilb: the category with objects corresponding to Hilbert
spaces, and arrows which are linear transformations between them. Relations
are somewhere in the middle between Set as a �classical� kind of category and
Hilb, which is a �quantum� kind of category. I'll leave further discussion of Rel
and Hilb for another rainy day, and pursue instead more formal developments
of category theory. Before, some other common categories are Vect, of vector
spaces and linear transformations, Grp of groups and group homomorphisms
and many others. Again, much stu� to talk about some other time, but the key
message is that all of the important structures of mathematics and physics, and
the mappings, functions or relations between them can be expressed within the
language of category theory.

Moving on, a particularly important type of arrow, is an �isomorphism�,
which is just an arrow f : A → B with an inverse f−1 : B → A such that their
composition, no matter the order, gives the identity

f ◦ f−1 = idA,

f−1 ◦ f = idB .

Two objects are isomorphic if there exists an isomorphism between them. We
write A ≃ B if A is isomorphic to B. In category theory for every single de�ni-
tion, there is a million di�erent ways of weakening or strengthening de�nitions,
and these are given a million di�erent names. This makes it so space is more
economically used, and often relates these concepts to people familiar with dif-
ferent areas of mathematics, but makes reading papers harder for people with
less experience and for physicists with more limited knowledge of pure mathe-
matics, like myself. For instance, in physics an invertible function often gives
the identity when composed with its inverse on the left and right always, but
in mathematics this is not always the case, hence one introduces the notion of
left-invertible and right-invertible in the obvious manner, and even calls right
invertible arrows �retractions�. Uniqueness of inverses can be proved easily, and
we do not do it here.

There are a bunch more names for special kinds of categories as well:
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• A category is skeletal if any two isomorphic objects are equal, i.e. A ≃
B =⇒ A = B

• A groupoid is a category in which every morphism is an isomorphism.

• A group is a groupoid with one object

• A category is discrete when all the morphisms are identities

• A category is indiscrete when there is a unique morphism A → B for each
two objects A and B

We can also make up new categories from old ones

• The opposite category to C, denoted Cop has the same objects as C but
all the arrows are reversed Cop(A,B) = C(B,A)

• The product category of C and D is denoted by C×D and its objects are
pairs (A ∈ Ob(C), B ∈ Ob(D)) and morphisms are pairs (f, g) : (A,B) →
(C,D), with f : A → C and g : B → D.

• A category C is a subcategory of D when every object of C is an object
of D, the same goes for morphisms and it has the same composition and
identities.

A skeleton of a category, is a name given to the subcategory S of a category C
which contains a single object from every isomorphism class in C.

All categories admit a graphical calculus: Objects are vertical lines, and
morphisms are boxes between vertical lines, with one input at the bottom and
one output at the top. The cool thing about this graphical calculus is that the
axioms of the category all make intuitive sense:

f

A

B

Object A: MorphismA

f

A

BComposition g ◦ f :

g

f : A → B:

C

Identities are not drawn, and therefore composition with them leaves a cer-
tain morphism invariant, and also associativity is built into the drawings (no
brackets are drawn). Succinctly
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f

A

B

idB

B

idA

A

A

f

B

= =f

A

B

f
A

B

g
C

h

D

f
A

B

g
C

h

D

=

Flipping this graphical calculus on the side simply gives the usual algebraic
constructions. The point is that categories with additional structure can admit
�parallel� morphisms, and the graphical language becomes much more useful
due to the additional 2D degrees of freedom of a drawing, when compared with
a string of algebraically meaningful symbols. I'll cover the basics of this in the
next post, when I cover monoidal categories. For now, a few more notions are
in order. Since categories are such a general construction, it is useful to relate
them. This seems to have been their original purpose, as we can prove things
easily in some categories and by showing that they can be mapped into other
categories obtain proofs which may be di�cult to obtain directly in the setting.

De�nition: Relationships between categories are described by functors. Func-
tors relate both objects and morphisms from di�erent categories, namely, if C
and D are categories, a functor F : C → D is given by

1. a mapping of objects, which associates to every A ∈ Ob(C) an object
F (A) ∈ Ob(D)

2. a mapping of arrows, which associates to every f : A → B ∈ C(A,B) an
arrow F (f) : F (A) → F (B) ∈ D(F (A), F (B)). This must preserve the
categorical structure, i.e. we must have the functorial relations

(a) F (idA) = idF (A)∀A ∈ Ob(C)

(b) F (g ◦ f) = F (g) ◦ F (f), ∀f : A → B, g : B → C

A redundant name used to describe functors is that they are �covariant�. This
is introduced in order to oppose the notion of a �contravariant functor�, which
is a construction in every respect equal to the functor but with F (g ◦ f) =
F (f)◦F (g) . If a category is a group, a functor is merely a group homomorphism,
which may be a good way to remember the functorial relations.

Two categories are equivalent when they have exactly the same structure.
This notion of equivalence of categories, is formalized by a special kind of func-
tor. A functor is an equivalence when

• It is full: For any two objectsA andB, the functionsC(A,B) → D (F (A), F (B))
given by f 7→ F (f) are surjective

• It is faithful: For any two objects A and B, the functions C(A,B) →
D (F (A), F (B)) given by f 7→ F (f) are injective
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• It is essentially surjective on objects: For every object B ∈ Ob(D), there
exists A ∈ Ob(A) such that B is isomorphic to F (A). This means that
the functor acts surjectively on objects up to an isomorphism

These notions can be used to simplify (or make the reading more complicated,
i.e. mystify) of the de�nition of a subcategory as well as the skeleton of a
category:

• C is a subcategory of D if the inclusion C → D is a faithful functor

• S is a skeleton of C is S is skeletal and the inclusion functor is an equiv-
alence

Finally, lets get to natural transformations: A functor is a map between cat-
egories, and a map between functors is a natural transformation. These ideas
of �maps between maps between maps between maps� is the kind of thing the
category theorist loves, and maybe one day I'll get to learning some notions of
higher category as well, which formalizes the structure of these kinds of things.

De�nition: Given two functors F : C → D and G : C → D a natural
transformation ζ : F =⇒ G assigns to every object A in C a morphism
ζA : F (A) → G(A) in D, such that, for every morphism f : A → B in C, the
following diagram commutes

F (A) G(A)

F (B) G(B)

ζA

F (f)

ζB

G(f)

Each morphism ζA is called a component of ζ, and if every component is an
isomorphism, then ζ is called a natural isomorphism.

We can now mystify the notion of equivalence: A functor F : C → D is
an equivalence if there exists a functor G : D → C and natural isomorphisms
G ◦ F ≃ idC and idD ≃ F ◦ G, where idC : C → C and idD : D → D have
every component idA : A → A = idA whether A ∈ C or A ∈ D.

This mysti�cation may seem pointless, but note that the �rst de�nition of
equivalence I gave is written in terms of the internal structure of the categories,
while this latter one is given in terms of its external context, i.e. the existence of
functors and natural transformations between the categories. This is precisely
the kind of thing which I hear that higher category describes and handles well.

2 Limits

Ok, so far we have looked into what a category is and took a few steps in
the �maps between maps between maps between maps� direction of things, by
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introducing functors and natural transformations. Another important concept
in category theory is that of limits. I will not give a general treatment of limits
today, but I may some other time when something which needs a more in depth
treatment of this subject comes up. For now, I will instead give a series of
de�nitions of certain universal properties which are examples of limits:

De�nition: If C is a category and A,B ∈ Ob(C), and A,B ∈ Ob(C), the
product is an object A×B together with arrows πA : A×B → A e πB : A×B →
B such that ∀C ∈ Ob(C) and for morphisms f : C → A and g : C → B there
exists a unique morphism ⟨f, g⟩ : C → A×B such that

πA ◦ ⟨f, g⟩ = f,

πB ◦ ⟨f, g⟩ = g.

This can be expressed in the form of the following commutative diagram

A A×B B

C

πA πB

f g⟨f, g⟩

De�nition: If C is a category and A,B ∈ Ob(C), a coproduct of A and B is
an object A+ B together with arrows ιA : A → A+ B e ιB : B → A+ B such
that ∀f : A → C and ∀g : B → C, ∃! [f, g] : A+B → C such that

[f, g] ◦ ιA = f,

[f, g] ◦ ιB = g.

This can also be expressed in terms of the following commutative diagram.

A A+B B

C

ιA ιB

f g[f, g]

The co-product is the dual notion of the product. One merely reverses
all the arrows in the diagram which de�nes the product. It is useful to give
some examples of the notion of products and coproducts. In Set, products are
given by the Cartesian product, and coproducts by the disjoint union. In Rel,
products and coproducts are both given by the disjoint union.
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De�nition: An object I ∈ Ob(C) in a category C is initial when ∀A ∈ Ob(C)
there exists a single arrow fA : I → A.

De�nition: An object T ∈ Ob(C) in a category C is terminal when ∀A ∈
Ob(C) there exists a single arrow gA : A → T .

In Set, any one-element set is a terminal object, and the initial set is the
initial object. In Rel, the empty set is both the terminal and initial object.
Such an object, which is both initial and terminal is called a zero object, often
denoted by 0. Furthermore, such an object induces unique maps 0AB : A → B,
which are the unique maps factoring through the zero object A → 0 → B.

A name for another special kind of category is a �Cartesian category� which
admits a terminal object and products for any pair of objects. Set, for instance,
is a Cartesian category.

The following universal property is concerned with the fact that is that given
a pair of functions f : A → B and g : A → B it may be interesting to ask on
which elements a ∈ A, f(a) = g(a). The focus on morphisms inherent to
category theory pushes us into focusing not on the elements, but rather using a
universal property to obtain the same information. This leads to the notion of
an equalizer

De�nition: Given f, g ∈ C(A,B) in a category C, their equalizer is a mor-
phism e : E → A such that f ◦ e = g ◦ e, such that any morphism e′ : E′ → A
which satis�es f ◦ e′ = g ◦ e′ allows a unique m : E′ → E with e′ = e ◦m. In
terms of a commutative diagram, we have

A BE

E′

f

g
e

e′m

Much like the coproduct construction, the coequalizer is the equalizer in the
opposite category. The �nal de�nition we shall provide here is a special case of
an equalizer, called a kernel.

De�nition: A kernel of a morphism f : A → B in a category C is an equalizer
of f and the zero morphism 0AB : A → B.

3 Some more words on the future

So this has been a brief introduction to some ideas of category theory. I am still
unsure as to how I will format my posts and how frequent they will be, but my
idea is to keep them short enough to be digestible and easy to write. Things
may seem half-baked for now, but I shall make use of the blog format and keep



9

adding to what I've written here in order to further develop each of the small
topics I've mentioned. Some things I've left open for now are:

• Examples in the category Rel

• Examples in the category Hilb

• The general notion of a limit

In the future, whenever I feel like it, I will cover some of these things. The next
post will be on Monoidal categories!


