
Post 4: Duals

In this post I will follow the beggining of Chapter 3 of Chris Heunen and
Jamie Vicary's Categories for Quantum Theory. I will focus on the concept
of dual objects and dualizability, which in the context of categorical quantum
mechanics captures the notion of maximally entangle states (Bell states, etc).
In the graphical calculus, this enables wires to bend backwards in time.

1 Dual objects

De�nition (Left and Right Dual object) In a monoidal category C, L ∈
Ob(C) is called the left-dual to R ∈ Ob(C) and R is the right-dual to L,
written as L ⊣ R, when there exists a unit morphism η : I → R ⊗ L and a
counit morphism ε : L⊗R → I such that the following diagram commutes

L L⊗ I

L I ⊗ L

L⊗ (R⊗ L)

(L⊗R)⊗ L

idL

λL

ρ−1
L

α−1
L,R,L

idL ⊗ η

ε⊗idL

R I ⊗R

R R⊗ I R⊗ (L⊗R)

(R⊗ L)⊗R

idR

ρR

λ−1
R

α−1
R,L,R

η⊗idR

idR ⊗ ε

De�nition (Dual object) LetC be a monoidal category, and let L,R ∈ Ob(C).
L is a dual of R if L ⊣ R and R ⊣ L.

In the graphical calculus, dual objects can be included by including an ori-
entation, i.e. an arrow, in each wire. An object L is drawn as a wire with an
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2 1 Dual objects

upward pointing arrow, and a right-dual R as a wire with a downward pointing
arrow.

Similarly, the unit η : I → R⊗L and counit ε : L⊗R → I are generally not
represented by morphism boxes. Instead, they are drawn as bent wires, called
the cup and the cap:

The duality comutative diagrams are then rendered as the famous snake or
zigzag equations

De�nition (Dualizability) Let C be a monoidal category. An object A ∈
Ob(C) is said to be dualizable if it admits both left and right duals.
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De�nition (Rigid monoidal category) A monoidal category C is rigid if every
object A ∈ Ob(C) is dualizable.

De�nition (Name and Coname) In a monoidal category C with dualities
A ⊣ A∗ and B ⊣ B∗, given a morphism f : A → B, its name is ⌈f⌉ : I → A∗⊗B
and its coname is ⌊f⌋ : A⊗B∗ → I. Graphically we have

Theorem (Choi-Jamiolkawsky correspondence) A morphism can be recov-
ered from its name using the snake equations.

Proof Simply note that the equality

de�nes an isomorphism between names and the corresponding morphisms.

Lemma (Uniqueness) Let C be a monoidal category with L,R ∈ Ob(C) and
L ⊣ R, then L ⊣ R′ if and only if R ≃ R′. Similarly, if L ⊣ R then L′ ⊣ R if and
only if L ≃ L′.

Proof Let us assume that L ⊣ R and L ⊣ R′, then we can de�ne maps R′ → R
and R′ → R, where we make use of the two dualities to diagramatically write
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By concatenating both of these maps, we have

which means they are inverses. This is enough to prove that both maps are
isomorphisms R ≃ R′. The proof for the other zig-zag equation follows this
exact one.

Conversely, let f : R → R′ be an isomorphism and L ⊣ R be a duality
with cup η and cap ε, then we can construct a cap ε ◦

(
idL ⊗ f−1

)
and a cup

(f ⊗ idL) ◦ η, which diagramatically reads

and forms a duality L ⊣ R′.

An isomorphism f : L → L′ would allow for an analogous construction.
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Lemma (Cup determines cap) LetC be a monoidal category and let (L,R, η, ε)
and (L,R, η, ε′) both form a duality, then ε = ε′. Similarly, let (L,R, η, ε) and
(L,R, η′, ε) both form a duality, then η = η′.

Proof Firstly, let the notation of bent wires hold for ε′. Diagramatically, one
�nds

The argument can easily be reversed to prove the η = η′ case.

Lemma (Self-duality of the monoidal unit) In a monoidal category I ⊣ I

Proof Let η = λ−1
I : I → I ⊗ I and let ε = λI : I ⊗ I → I. This is a duality,

since the snake equations follow directly from the properties of λI (coherence).
Using the graphical calculus, all images are empty and the result follows trivially.

Lemma (Monoidal products of duals) In a monoidal categoryC, let L,R,L′, R′ ∈
Ob(C), then L ⊣ R and L′ ⊣ R′ implies that L⊗ L′ ⊣ R⊗R′.

Proof Graphically, one has
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Lemma (Duality in braided monoidal categories) In a braided monoidal cat-
egory L ⊣ R ⇒ R ⊣ L.

Proof Suppose (L,R, η, ε) forms a duality L ⊣ R, then using the braiding, one
can construct the duality (R,L, η′, ε′) as

Writing the snake equations for η′ and ε′ shows that the required properties
are satis�ed
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Here, we have made use of the generic manipulation

De�nition (Transpose) In a monoidal category C for a morphism f : A → B
and dualities A ⊣ A∗ and B ⊣ B∗, the right dual, or transpose f∗ : B∗ → A∗ is
de�ned as
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Note that he right dual is drawn by rotating the box representing f .

De�nition (Right dual functor) In a monoidal category C, in which every
object has a chosen right dual X∗, the right dual functor (·)∗ : C → Cop is
de�ned on objects as (X)

∗
:= X∗ and on morphisms as (f)

∗
= f∗.

Proposition (Right dual functor is a functor) The right dual functor satis�es
the functor axioms.

Proof Let f : A → B and g : B → C, then

Similarly, (idA)
∗
= idA∗ follows from the snake equations.
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Lemma (Sliding) In a monoidal category with chosen dualities A ⊣ A∗ and
B ⊣ B∗, the following equations hold for all morphisms f : A → B

Proof Diagramatically, we have

We now provide some addtional theorems without proof, regarding the in-
teraction of monoidal structure and the dual construction.

2 Interaction with monoidal structure

Theorem Monoidal functors preserve duals.

Proof Let C and C' be categories and F : C → C ′ a monoidal functor. with
η : I → A⊗A∗ and ε : A⊗A∗ → I witnessing the duality A ⊣ A∗ in C. We wish
to show that F (A) ⊣ F (A∗) is a duality in C ′. The proof proceeds by stacking
a series of commutative diagrams corresponding to monoidal functor axioms or
naturality to produce one big one which amounts to the snake equations.

The �rst we consider is the monoidal functor axiom

The second is naturality



10 2 Interaction with monoidal structure

The third is the other monoidal functor axiom

The fourth is again naturality

And the �nal one is the monoidal functor axiom

Together, and ignoring the interior arrows, we have



11

If we de�ne η′ = (F2)
−1
A∗,A ◦ F (η) ◦ F0 : I ′ → F (A∗) ⊗ F (A) and ε′ =

(F0)
−1 ◦ F (ε) ◦ (F2)A,A∗ : F (A) ⊗ F (A∗) → I ′, then the left hand side is the

snake equation in C ′ in terms of η′ and ε′. The right-hand side is the snake
equation in Cin terms of η and ε, under the image of F .

Then, since functors preserve identities, the right-hand side is the identity
in C ′, which establishes the �rst snake equation. The other snake equation is
proven similarly.

Theorem Let C and D be monoidal categories, and let F,G : C → D be
monoidal functors. Let µ : F ⇒ G be a monoidal natural transformation. Let
A ∈ Ob(C) have a right or left dual. Then, µA : F (A) → G(A) is invertible.

Lemma (Double dual functor is monoidal) Let C be a category with chosen
right duals for the objects. The double dual functor (·)∗∗ : C → C is monoidal.
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3 More to come

Next post I will introduce the fundamental notions of pivotal and ribbon cat-
egories, still following the approach of Heunen and Viacary and �nishing with
this book for a while, as we will reach the end of chapter 3.


