
Post 3: Reconstructing linear algebra

from categories

T. V. C. Antão

Over the last months, I took a break from this blog project in order to
write my Master's dissertation on Topology and disorder in spin systems. I
since started my PhD at Aalto University in Finland and am working hard on
other projects. I �nally found some time to able to return with this third blog
post, where I will continue with notes from my reading of Heunen and Vicary's
Categories for quantum theory, by going over chapter 2, on the linear structure
of monoidal categories.

The idea of this post is to show how linear algebraic concepts can be re-
covered from ideas of category theory. I will cover the concept of scalars as
morphisms from the tensor unit to itself, and the categorical generalization of
scalar multiplication. I will show how scalars form a commutative monoid. I
will cover the idea of a zero object, which generalizes the idea of the zero di-
mensional vector space to the categorical setting, and I will also go over the
concept of enrichment in commutative monoids, or �superposition rules� in the
language of categorical quantum mechanics, which provides an idea of addition
of vectors, compatible with the scalar multiplication. The idea of biproducts
is also introduced, which in the setting of categories enriched in commutative
monoids with zero objects provide a generalization of the idea of the direct sum
of vector spaces, and allows for a matrix notation. Finally, I will go over the
concept of daggers, which allow for the generalization of adjoints, and for the
construction of inner products.

1 Scalars

In linear algebra, we work with vector spaces over �elds. In particular, we can
build a vector space VK by considering abstract objects, often called vectors,
which obey certain axioms, among which is closure under �scalar multiplica-
tion� with objects from a �eld K. Transformations between vector spaces that
preserve this scalar multiplication, i.e. for two vector spaces VK and WK, an
element v ∈ VK, a linear transformation is a function T : VK → WK, which for
an element of the underlying �eld a ∈ K, is such that T (av) = aT (v).

Of course, as we have mentioned, we can consider vector spaces as objects,
and linear transformations between them as morphisms, in order to construct
the category of vector spaces, called VectK. More generically than the category
of vector spaces, there are many aspects of linear algebra that can be described
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by monoidal categories. For instance, if we take a top-down approach and
start with the monoidal category Hilb, we can extract from it the structure of
complex numbers. In particular, the monoidal unit object I in Hilb, is given
by the complex numbers C, and therefore morphisms I → I are linear maps
f : C → C. Since this map is linear, it is determined by f(1), where by linearity
we have f(s) = sf(1). Thus, the space of linear functions over C is in exact
correspondence with C itself.

Furthermore, in general, we often consider morphisms I → I in a monoidal
category as behaving life a �eld, and in fact, we use a provocative name:

De�nition (Scalars) In a monoidal category, the scalars are the morphisms
I → I.

Despite not always forming a �eld, scalars in a monoidal category always
form a monoid.

De�nition (Monoid) A monoid is a set A with a multiplication operation,
which we can write as a juxtaposition of elements A, and a chosen unit element
1 ∈ A, satisfying for all r, s, t ∈ A

1. An associative law r(st) = (rs)t

2. A unit law 1s = s = s1.

It should be clear that this is simply a one-element category, but I will delve
more deeply into this connection in some later post. The point here is simply
that scalars in a category form a monoid under composition.

Besides forming a monoid, one additional property of scalars in a monoidal
category is that they are commutative. They form a commutative monoid.

Proof: Proving this can be done in a complicated or a simple way. The com-
plicated way is to consider the commutative diagram

I

II

I⊗I

I⊗II⊗I

I

s

s
t t

s⊗idI

s⊗idI

idI⊗t idI⊗t

I⊗I

λ−1
I

λI

ρ−1
I

ρIλI ρI

λ−1
I ρ−1

I

and noting that the sides of the cube commute by naturality of λI and ρI ,
while the bottom square commutes by the interchange law we mentioned in
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a previous blog-post. Therefore, the top square must commute as well, and
st = ts.

The second, much easier way to prove this is to employ the graphical calculus.
The scalars can be drawn as circles, with no inputs or outputs, and therefore,
we can write

s

t

st

s

t

= =

After the de�nition of scalars, the next step towards linear algebra, is the
de�nition of a scalar multiplication.

De�nition (Scalar multiple) Given a scalar s : I → I and a morphism f :
A → B, the left scalar multiplication s • f : A → B is the composite

Lemma In a monoidal category, let s, t : I → I be scalars, and let f : A → B
and g : B → C be morphisms. Then

1. idI • f = f

2. s • t = s ◦ t

3. s • (t • f) = (s • t) • f

4. (t • g) ◦ (s • f) = (t ◦ s) • (g ◦ f)

Again, all the statements included in this lemma can be proved straightforwardly
using the graphical calculus.

2 Zero object

Once the scalar structure is de�ned, one can also consider the concept of �ad-
dition of vectors�, or in the language of quantum mechanics, the concept of
superposition. In QM, a linear superposition of qubits a, b ∈ C2 is a linear com-
bination sa+tb with s, t ∈ C. In categorical language, superposition is captured
by the concept of enrichment by commutative monoids.

The starting point is the notion of a zero object. If we think about linear
transformations between two vector spaces V and W , there is always a zero
transformation that sends all elements of V to the zero vector in V → 0W
. This linear map is characterized by saying that it factors uniquely through
the zero-dimensional vector space V → {0} → W . This is because there is a
unique linear map {0} → W , which sends 0 7→ 0W and a unique linear map
V → {0} which sends all vectors a 7→ 0. Beyond the context of VectK, there is
a categori�ed notion of this zero object
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De�nition (Zero object) An object 0 in a category C is a zero object when
it is both initial in terminal, i.e. when there are unique morphisms A → 0 and
0 → A,∀A ∈ Ob(C).

De�nition (Zero morphism) In a category C with a zero object 0, a zero
morphism 0A,B : A → B is the unique morphism factoring through the zero
object, i.e. A → 0 → B.

Lemma (Unicity of initial, terminal and zero objects) Initial, terminal and
zero objects are unique up to a unique isomorphism.

Proof If A and B are initial objects, then there are unique morphisms f : A →
B, g : B → A, idA : A → A and idB : B → B. This means that f ◦ g = idB
and g ◦ f = idA, which means that g = f−1, and thus f is an isomorphism. f
is unique by construction.

Lemma (Composition with 0 gives 0) Composition with a zero morphism
always gives a zero morphism, i.e. ∀A,B,C ∈ Ob (C), and f : A → B,

f ◦ 0C,A = 0C,B , (1)

0B,C ◦ f = 0A,C , (2)

Proof f ◦ 0C,A is of type C → B and factors through the zero object as
C → 0 → A → B. By de�nition, it must equal 0C,B .

3 Superposition rules

De�nition (Superposition rule) LetC be a category An operation+ : Hom(A,B)×
Hom(A,B) → Hom(A,B) which has the following properties:

1. Commutativity: f + g = g + f

2. Associativity: (f + g) + h = (f + g) + h

3. Units: ∀A,B,∃uA,B : A → B such that ∀f : A → B, f + uA,B = f

4. Addition is compatible with composition:

(g + g′) ◦ f = (g ◦ f) + (g′ ◦ f) , (3)

g ◦ (f + f ′) = (g ◦ f) + (g ◦ f ′) . (4)

5. Units are compatible with composition: ∀f : A → B, ∀C,D ∈ Ob(C),

uC,B = f ◦ uC,A, (5)

uA,D = uB,D ◦ f. (6)
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Note that this operation turns the Hom-set Hom(A,B) into a commutative
monoid. For this reason, a superposition rule is also called an enrichment in
commutative monoids. The �eld which studies categories with Hom-set enriched
by some structure such as commutative monoids, vector-spaces, etc, is called
enriched category theory. I will go at least one other example of an enriched
category in a later post, when I get to topological order.

Lemma (0A,B = uA,B) In a category C with a zero object and a superposition
rule, uA,B = 0A,B ,∀A,B ∈ Ob(C).

Proof Since units are compatible with superposition uA,B = u0,B ◦uA,0 : A →
0 → B. But the unique map A → 0 → B is 0A,B , therefore uA,B = 0A,B .

It is customary to simply write 0A,B for the superposition rule unit, when
we work in a category with this zero object.

De�nition (Commutative semi-ring with absorbing zero) A commutative
semi-ring with an absorbing zero is a set equipped with commutative and asso-
ciative multiplication × and addition + operations which obey

(r + s) t = rt+ st, (7)

r (s+ t) = rs+ rt, (8)

s+ t = t+ s, (9)

s+ 0 = s, (10)

s0 =0 = 0s. (11)

Lemma If a monoidal category has a zero object and a superposition rule, its
scalars form a commutative semi-ring under ◦ and +.

Proof The �rst four properties of the commutative semi-ring are automatically
obeyed by the de�nition and requirements imposed on the superposition rule +.
The last property follows from the lemma which states that composition with 0
gives 0.

De�nition (Linear functor) Given two categoriesC andD, with superposition
rules, a functor F : C → D is linear when F (f + g) = F (f) + F (g),∀f, g ∈
Hom (A,B) ,∀A,B ∈ Ob(C).

3.1 Biproducts

A third important operation in linear algebra, is the direct sum. The direct
sum V ⊕W provides a way to glue together the vector spaces V and W . The
constituent vector spaces are part of the direct sum, and are included in V ⊕W
via the injection maps V → V ⊕W and W → V ⊕W given by a 7→ (a, 0), b 7→
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(0, b) respectively. At the same time, the direct sum is completely determined by
its parts via the projection maps V ⊕W → V and V ⊕W → W determined by
(a, b) 7→ a ∈ V and (a, b) 7→ b ∈ W . Furthermore, the reconstruction operation
can undo the deconstruction, since (a, b) = (a, 0) + (0, b). Although the notion
of biproducts is quite general and does not need an enrichment in commutative
monoids, superposition rules help phrase the structure in any category.

De�nition (Biproducts in general) A biproduct is a product which is also a
coproduct.

De�nition (Biproducts in categories with superposition rules and zero ob-
jects) In a category C with a zero object 0 and a superposition rule +, the
biproduct of two objects A1 and A2 is an object A1⊕A2 equipped with injection
morphisms in : An → A1 ⊕ A2 and projection morphisms pn : A1 ⊕ A2 → An

for n = 1, 2 satisfying

idAn
= pn ◦ in,

0An,Am
= pm ◦ in, for n ̸= m,

idA1⊕A2
= i1 ◦ p1 + i2 ◦ p2.

This generalizes to an arbitrary �nite number of objects A1 ⊕ A2 ⊕ · · · ⊕ An.
Also, for the biproduct of no objects, we have simply the zero object.

In general, the idea of biproducts is that they allow us to glue objects to-
gether in order to form a larger compound object. Injections tell us how original
objects form part of the biproduct, and projections show how we can transform
the biproduct into the original objects.

Lemma A biproduct in categories with superposition rules and zero (BCS0)
objects is a biproduct in the general sense.

Proof To show that a biproduct A ⊕ B in a category C with superposition
rule + and zero object 0 is a biproduct, we must show that it is a product
and a coproduct. Let us prove that it is a product. Recall, from post 1 that a
product is such that, for all C ∈ Ob(C) and for all f : C → A and g : C → B,
∃!h : C → A⊕B, p′A ◦ h = f, p′B ◦ h = g.

Now, due to the fact that A⊕B is a biproduct in the BCS0 sense, it admits
projections pA, pB , which we tentatively identify with p′A and p′B and injections
iA, iB . In particular, one can construct the morphism iA◦f+iB ◦g : C → A⊕B.
Note that

pA ◦ (iA ◦ f + iB ◦ g) = pA ◦ iA ◦ f + pA ◦ iB ◦ g
= f + 0A,C

= f, (12)
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by virtue of the properties of the superposition rule. Similarly

pB ◦ (iA ◦ f + iB ◦ g) = pB ◦ iA ◦ f + pB ◦ iB ◦ g
= 0B,C + g

= g. (13)

Furthermore, suppose there exists another morphism h which satis�es pA◦h = f
and pB ◦ h = g. Then

h = (iA ◦ pA + iB ◦ pB) ◦ h
= iA ◦ f + iB ◦ g,

and therefore iA ◦ f + iB ◦ g is unique. Therefore, the universal property of the
product is satis�ed, and the biproduct is indeed a product. The proof that it is
a coproduct proceeds identically with all arrows reversed.

Lemma (Unique superposition) If a category has biproducts, then it has a
superposition rule.

Proof Let + and ⊞ be two superposition rules, and consider f, g : A → B
and the biproduct A ⊕ A with projections p1, p2 : A ⊕ A → A and injections
i1, i2 : A⊕A → A. Then

f + g = (f ⊞ 0A,B) + (0A,B ⊞ g)

= (f ◦ p1 ◦ i1 ⊞ f ◦ p1 ◦ i2) + (g ◦ p2 ◦ i1 ⊞ g ◦ p2 ◦ i2)
= f ◦ p1 ◦ (i1 ⊞ i2) + g ◦ p2 ◦ (i1 ⊞ i2)

= (f ◦ p1 + g ◦ p2) ◦ (i1 ⊞ i2)

= ((f ◦ p1 + g ◦ p2) ◦ i1)⊞ ((f ◦ p1 + g ◦ p2) ◦ i2)
= (f ◦ p1 ◦ i1 + g ◦ p2 ◦ i1)⊞ (f ◦ p1 ◦ i2 + g ◦ p2 ◦ i2)
= (f + 0A,B)⊞ (0A,B + g)

= f ⊞ g. (14)

This means that + = ⊞, and therefore the superposition rule is unique.

De�nition (Biproduct preservation) A functor F between two categories C
and D with zero objects and superposition rules preserves biproducts if A⊕B
is a biproduct in C with injections iA, iB and projections pA, pB implies that
F (A ⊕ B) is a biproduct in D with injections F (iA), F (iB) and projections
F (pA), F (pB).

Proposition Let C be a category with biproducts and a zero object, and sup-
pose that a functor F : C → D preserves zero objects. Then F preserves
biproducts if and only if it is linear.
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Proof Let F preserve biproducts, and let (A⊕A, i1, i2, p1, p2) be a biproduct
in C. Note that, by the functoriality axioms F (idA⊕A) = idF (A⊕A), and since F
preserves biproducts, the image of the biproduct is (F (A⊕A), F (i1), F (i2), F (p1), F (p2)),
we can split idA⊕A = i1◦p1+i2◦p2 and idF (A⊕A) = F (i1)◦F (p1)+F (i2)◦F (p2),
or by functoriality idF (A⊕A) = F (i1 ◦ p1) + F (i2 ◦ p2). We have

F (i1 ◦ p1 + i2 ◦ p2) = F (i1 ◦ p1) + F (i2 ◦ p2) . (15)

Then, for any morphisms f, g : A → B, we have

F (f + g) =F (f + 0A,A + 0A,A + g)

=F (f ◦ p1 ◦ i1 + g ◦ p2 ◦ i1 + f ◦ p1 ◦ i2 + g ◦ p2 ◦ i2)
=F ((f ◦ p1 + g ◦ p2) ◦ i1 + (f ◦ p1 + g ◦ p2) ◦ i2)
=F ((f ◦ p1 + g ◦ p2) ◦ (i1 + i2))

=F ((f ◦ p1 + g ◦ p2) ◦ (i1 ◦ p1 + i2 ◦ p2) ◦ (i1 + i2))

=F (f ◦ p1 + g ◦ p2) ◦ F (i1 ◦ p1 + i2 ◦ p2) ◦ F (i1 + i2)

=F (f ◦ p1 + g ◦ p2) ◦ F (i1 ◦ p1) + F (i2 ◦ p2) ◦ F (i1 + i2)

=F (f ◦ p1 + g ◦ p2) ◦ (F (i1 ◦ p1) + F (i2 ◦ p2)) ◦ F (i1 + i2)

=F (f ◦ p1 + g ◦ p2) ◦ F (i1 ◦ p1) ◦ F (i1 + i2)

+ F (f ◦ p1 + g ◦ p2) ◦ F (i2 ◦ p2) ◦ F (i1 + i2)

=F ((f ◦ p1 + g ◦ p2) ◦ i1 ◦ p1 ◦ (i1 + i2))

+ F ((f ◦ p1 + g ◦ p2) ◦ i2 ◦ p2 ◦ (i1 + i2))

=F ((f ◦ p1 + g ◦ p2) ◦ i1 ◦ p1 ◦ i1)
+ F ((f ◦ p1 + g ◦ p2) ◦ i2 ◦ p2 ◦ i2)

=F (f) + F (g). (16)

Conversely, one simply has to note that products are de�ned in terms of a �nite
number of equalities involving composition, zero objects and the superposition
rule. One can check that these equalities (the axioms of the biproduct) are
preserved by linear functors F , from which follows that F preserves biproducts.

This concludes the proof.

Proposition Let C and D be categories with a zero object and a superposition
rule. Let F,G : C → D be linear functors preserving the zero object, and let
µ : F ⇒ G be a natural transformation. Then, for all objects A,B, µA⊕B is
determined by µA and µB as

µA⊕B = (G (iA) ◦ µA ◦ F (pA)) + (G (iB) ◦ µB ◦ F (pB)) . (17)

Proof We have
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µA⊕B = (G (iA) ◦G (pA) +G (iB) ◦G (pB)) ◦ µA⊕B

= G (iA) ◦G (pA) ◦ µA⊕B +G (iB) ◦G (pB) ◦ µA⊕B

= G (iA) ◦ µA ◦ F (pA) +G (iB) ◦ µB ◦ F (pB). (18)

This completes the proof

4 Matrices

One hallmark of linear algebra is the ability to write linear maps as matrices.
In the categorical setting, any category with biproducts admits a generalized
matrix notation.

De�nition (Matrix) For a collection of maps fm,n : Am → Bn, where n =
1, . . . , N and m = 1, . . . ,M , their matrix can be de�ned as

(fm,n) =


f1,1 f2,1 · · · fM,1

f1,2 f2,2 · · · fM,2

...
...

. . .
...

f1,N f2,N . . . fM,N

 :=
∑
m,n

(in ◦ fm,n ◦ pm) . (19)

Lemma (Matrix representation) In a category with biproducts, every mor-

phism f :
⊕M

m=1 Am →
⊕N

n=1 Bn has a matrix representation.

Proof Note that

f = id⊕N
n=1 Bn

◦ f ◦ id⊕M
m=1 Am

=

N∑
n=1

(in ◦ pn) ◦ f ◦
M∑

m=1

(im ◦ pm)

=

M∑
m=1

N∑
n=1

(in ◦ pn) ◦ f ◦ (im ◦ pm)

=

M∑
m=1

N∑
n=1

in ◦ (pn ◦ f ◦ im) ◦ pm, (20)

which can be exactly identi�ed with the matrix representation by denoting
fm,n = pn ◦ f ◦ im.

Corollary (Entries determine matrices) In a category with biproducts, mor-
phisms between biproduct objects are equal if and only if their matrix entries
fn,m are equal.
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Example (Identity matrix) Let A,B be objects in a category C which admits
biproducts. The identity matrix idA⊕B has a matrix representation

idA⊕B =

(
idA 0B,A

0A,B idB

)
. (21)

Proposition (Matrix multiplication) Matrices multiply as

(gk,n) ◦ (fm,k) =
∑
k

gk,n ◦ fm,k. (22)

Proof Note that

(gk,n) ◦ (fm,k) =

∑
k,n

(in ◦ gk,n ◦ pk)

 ◦

∑
m,l

(il ◦ fm,l ◦ pm)


=

∑
k,n,m,l

(in ◦ gk,n ◦ pk) ◦ (il ◦ fm,l ◦ pm)

=
∑

k,n,m,l

in ◦ gk,n ◦ fm,l ◦ pmδk,l

=
∑
k,n,m

in ◦ (gk,n ◦ fm,k) ◦ pm

=
∑
n,m

in ◦

(∑
k

gk,n ◦ fm,k

)
◦ pm. (23)

This completes the proof.

Observation We saw that scalar multiplication is distributive over a superpo-
sition rule, and one might expect that tensor products distribute similarly over
biproducts. Even though this is the case for vector spaces, with U ⊗ (V ⊕W ) ≃
U ⊗ V ⊕ U ⊗W , it is not true for general monoidal categories. Indeed it is not
true that f ⊗ (g + h) = f ⊗ g + f ⊗ h and not even that f ⊗ 0 = 0. This nice
interaction requires duals for objects, which I will cover in the next post. In
general, the best one can do is the following lemma.

Lemma In a monoidal category C with a zero object 0, 0⊗ 0 ≃ 0.

Proof Consider the morphisms f = 0I,0 ⊗ id0 ◦ λ−1
0 : 0 → 0 ⊗ 0, and g =

λ0 ◦ 0I,0 ⊗ id0 : 0 ⊗ 0 → 0. These morphisms are unique in either direction
since they are compositions of unique morphisms. Furthermore, f ◦ g = id0⊗0

and g ◦ f = id0, which implies that they are inverses and an isomorphism
f : 0 → 0⊗ 0. This is summarized in the commutative diagram
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0⊗ 0 I ⊗ 0

0

I ⊗ 00⊗ 0

00,I⊗ id0

id0⊗0 idI⊗0

λ0

λ−1
0

0I,0⊗ id0

5 Daggers

One additional concept central to linear algebra is the inner product. A cate-
gori�ed notion of this construction is achieved by the construction of a dagger.
A dagger in a category C is a contravariant involutive endofunctor on C which
is compatible with the monoidal structure. It categori�es the construction of
the adjoint of a linear map between Hilbert spaces, which encodes all the infor-
mation about the inner products.

Let us look at a detailed de�nition on Hilb. The idea in this context is that
any morphism (bounded linear map) f : H → K between Hilbert spaces admits
a unique adjoint, which is also a bounded linear map f† : K → H.

De�nition (Adjoint) On Hilb, the functor which takes adjoints † : Hilb →
Hilb is the contravariant functor that takes objects to themselves, and mor-
phisms to their adjoints as bounded linear maps.

For † to be contravariant, it must satisfy (g ◦ f)† = f† ◦ g†, and id†A =
idA. Furthermore, since it is the identity on objects, then † (H) = H,∀H ∈
Ob(Hilb). The involutive condition means that

(
f†)† = f for all morphisms f .

Observation Knowing all adjoints su�ces to reconstruct the inner product on
Hilbert spaces. In Hilb, recall that the unit is I = C. Let a, b : C → H be
states of some Hilbert space H. The scalar a† ◦ b : C → H → C is equal to the
inner product ⟨a| b⟩. To see this, note that since b is C−linear, it is determined
on C by b(1). Therefore, we have

a†(b(1)) = ⟨1| a† (b(1))
〉
= ⟨a| b⟩ . (24)

This means that the functor † contains all the information required to recon-
struct the inner products on the Hilbert spaces. Since the functor is de�ned
in terms of inner products in the �rst place, then knowing † is equivalent to
knowing the inner products. This suggests a generalization of the idea of inner
products to arbitrary categories.

De�nition (Dagger) A dagger on a category C is an involutive contravariant
functor † : C → C that is the identity on objects.



12 5 Daggers

De�nition (Dagger category) A dagger category is a category equipped with
a dagger.

A contravariant functor is therefore a dagger exactly when

(g ◦ f)† = f† ◦ g†, (25)

id†A = idA, (26)(
f†)† = f. (27)

De�nition (Involutive monoid) A one-object dagger category is also called
an involutive monoid. It can also be thought of as a set, which in addition to
satisfying the monoid axioms with respect to a product · : M × M → M , is
also equipped with a function † : M → M such that, ∀a, b ∈ M(ab)

†
= b†a† and(

a†
)†

= a.

De�nition (Names in a dagger category) In a dagger category, several names
are given to special morphisms, generalizing the nomenclature of bounded linear
maps between Hilbert spaces. A morphism f : A → B in a dagger category C
is

1. the adjoint of g : B → A, when g = f†

2. self-adjoint, when f = f† and A = B

3. idempotent when f = f ◦ f

4. a projection if it is idempotent and self-adjoint

5. unitary when f† ◦ f = idA and f ◦ f† = idB

6. an isometry when f† ◦ f = idA

7. a partial isometry when f† ◦ f is a projection

8. positive when f = g† ◦ g for some morphism g : A → C, and A = B

It is desirable for constructions to be compatible with important structures of
certain categories. For instance, the dagger is an important structure, and it is
useful, for example, for the zero morphisms to be compatible with the dagger.
This compatibility actually comes for free

Lemma (Dagger and zero morphism) In a dagger category with a zero object

0†A,B = 0B,A.

Proof From the functoriality of dagger

0†A,B = (A → 0 → B)
†
= (B → 0 → A) = 0B,A. (28)
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Lemma (Dagger and zero objects) In a dagger category, if an object is initial
or terminal, it is a zero object.

Proof If A is an initial object, Hom (A,B) is composed of a single morphism
for every object B. The dagger functor gives an isomorphism Hom (A,B) ≃
Hom (B,A) and therefore Hom (B,A) also has a single morphism for every ob-
ject B. Therefore A is also terminal, and since it is initial and terminal it is
a zero object. The argument works mutatis mutandis when A is a terminal
object.

De�nition (Monoidal dagger category) A monoidal dagger category C is a

category that is also monoidal, such that (f ⊗ g)
†
= f†⊗g†,∀f, g ∈ C(A,B),∀A,B ∈

Ob(C), and such that all components of the associator α and unitors ρ and λ
are unitary.

De�nition (Braided monoidal dagger category) A braided monoidal dagger
category is a monoidal dagger category equipped with a unitary braiding.

De�nition (Symmetric monoidal dagger category) A symmetric monoidal
dagger category is a braided monoidal dagger category for which the braiding
is a symmetry.

Taking daggers in the graphical calculus can be performed by �ipping the
graphical representation about a horizontal axis. To help di�erentiate between
a morphism f and its adjoint, morphisms are usually drawn in a way which
breaks the symmetry. For instance

f f
†

A

B A

B

Note that the adjoint is represented purely by the orientation of the wedge.

Example A unitary morphism obeys

f

f

= =

f

f



14 5 Daggers

Observation A dagger induces a correspondence between states a : I → A and
e�ects a† : A → I.

a

A

A

a
†

Observation The inner product is represented as

a

b

=⟨a|b⟩ =
b

a

The second equality is simply a very suggestive form of writing the inner product
which mimics, up to a 90 degree rotation, the Dirac bra-ket notation. Indeed,
the graphical calculus for monoidal dagger categories can be thought of as a
generalizing, to the categorical context, the Dirac notation.

The �nal subject covered here is that of dagger biproducts, which allow for
the generalization of the conjugate transpose matrix.

De�nition (Dagger biproducts) In a dagger category with a zero object and a
superposition rule, a dagger biproduct of objects A and B is a biproduct A⊕B
whose injections and projections satisfy i†A = pA and i†B = pB .

Lemma (Adjoint of a matrix) In a dagger category C with dagger biproducts,
the adjoint of a matrix is its conjugate transpose


f1,1 f2,1 · · · fM,1

f1,2 f2,2 · · · fM,2

...
...

. . .
...

f1,N f2,N . . . fM,N


†

=


f†
1,1 f†

1,2 · · · f†
1,N

f†
2,1 f†

2,2 · · · f†
2,N

...
...

. . .
...

f†
M,1 f†

M,2 . . . f†
M,N

 . (29)

Proof The proof follows from expanding the matrix form
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(fmn)
†
=

(∑
m,n

in ◦ fn,m ◦ pm

)†

=

(∑
m,n

in ◦ fn,m ◦ i†m

)†

=
∑
p,q

ip ◦

(
i†q ◦

(∑
m,n

in ◦ fn,m ◦ i†m

)
◦ ip

)†

◦ i†q

=
∑
p,q

ip ◦

(∑
m,n

i†q ◦ in ◦ fn,m ◦ i†m ◦ ip

)†

◦ i†q

=
∑
m,n

∑
p,q

δq,nδm,pip ◦ (fn,m)
† ◦ i†q

=
∑
p,q

ip ◦ (fq,p)† ◦ i†q. (30)

This concludes the proof.

Corollary In a dagger category with dagger biproducts, daggers distribute over
addition

(f + g)
†
= f† + g†. (31)

Proof We can compute

(f + g)
†
=

((
f g

)
◦
(
idA
idB

))†

=

(
idA
idB

)†

◦
(
f g

)†
=
(
idA idB

)
◦
(
f†

g†

)
= f† + g†.

This concludes the proof.

6 More to come

With the continued aim towards the necessary category theory for an under-
standing some notions of topologically ordered phases of matter, I am still follow-
ing Chris Heunen and Jamie Vicary's book on categorical quantum mechanics.
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In the next post I will move on to chapter 3 and introduce dual objects, which
in graphical terms endow diagrams with directional arrows, as well as units and
co-units allowing one to bend wires in the vertical direction. These structures
have already a very beautiful interpretation in the categorical quantum mechan-
ics, as generating Bell states, etc, which I do not believe I will go over. But
more notably, they allow the introduction of much richer structure like twisting
in braided monoidal categories, and more types of categories such as pivotal
categories, compact categories, ribbon categories, etc.

I will now keep following Heunen and Vicary's book to chapter 4. After this
point, one could proceed and introduce the graphical calculus for monoids and
co-monoids, Frobenius and Hopf algebras, and eventually get to the ZX-calculus
which is a diagrammatic language for quantum computation. In particular I
have already written some notes on the connection of the ZX-calculus with
measurement based quantum computation (hugely in�uenced by my girlfriend).
On the other hand, I could move directly into more category theory and move
explicitly in the direction of understanding the language of topological order
by establishing connections with the physical picture of anyons and topological
defects, and starting to move towards unitary modular tensor categories. This
second approach is the one I shall follow. After some connecting interlude using
�An invitation to topological orders and category theory� by Kong and Zhang, I
will delve into a book which arrived into my doorstep just this week �Topological
Quantum� by Steven H. Simon.


