
Post 2: Monoidal category theory: An

introduction to diagrams

T. V. C. Antão

In this second blog post I am following up on last week's introduction to
category theory, and I am covering a particular kind of category equipped with
extra data called a monoidal category. I've already spoiled a great deal about
these monoidal categories in my last post, where I've mentioned the reason that
they are interesting is that they admit a diagrammatic language, and thus we
can reason about them by drawing pictures. In this post I hope to describe the
structure of a monoidal category in more abstract terms, as well as introduce
the graphical calculus. The idea is that this extra data which makes a category
into a monoidal category works to describe how morphisms can be composed
in parallel, and thus pictures can much better represent parallel compositions
due to the fact that we can make use of the 2D plane and write morphisms
�side by side�. Furthermore, if we admit non-trivial braiding of morphisms, the
dimension needed to represent the graphical calculus goes up to three, since as
we will see we can bend �wires� around each other in 3D space. Note that this
post is simply a slightly digested (but mostly faithful to the original) version
of Chapter 1 of �Categories for Quantum Theory� by Heunen and Vicary. In
these notes, the fact that this blog is merely a glori�ed note-taking project
becomes clear :-). Refer to the original book for a better description of basically
everything I am writing here.

1 The structure of a Monoidal category (algebraically)

The most natural way to interpret a category is that systems are objects, and
morphisms are processes which change said objects, or turn some objects into
others. This idea is at the root of the �process� interpretation of quantum
mechanics, underlying Bob Coecke's and Alex Kissinger's beautiful book �Pic-
turing Quantum Processes�, where categorical quantum mechanics is explained
very pedagogically. As I stated in last week's post, the idea of categories is to
allow composition of these processes, i.e. morphisms are composed �vertically�
in the page, whereas the idea of monoidal categories is that we can also let
processes happen �simultaneously�, or �in parallel�.

So, a new symbol is necessary to express this parallel composition. The
symbol ⊗ is used most often, and is generically called a �tensor product� or
sometimes simply �tensor�. One of the key aspects of monoidal categories is
that unlike what us physicists are used, in assuming that (A⊗B) ⊗ C and

1



2 1 The structure of a Monoidal category (algebraically)

A⊗ (B ⊗ C) are equal, for monoidal categories this is not always true. Indeed,
this is often too strong of an assumption, even for the applications of monoidal
categories to physical theories. I will hopefully, some day in the future, give the
example of anyons, where the �fusion rules�, i.e. the tensor product structure
is di�erent depending of the order of �fusion�, and instead the relation between
di�erent orders of fusion is encoded in the so-called F−matrices. Generically, a
monoidal category is de�ned as

De�nition (Monoidal category): Amonoidal category is a categoryC equipped
with the following data:

• A tensor product functor ⊗ : C ×C → C

• A unit object I ∈ Ob(C)

• An natural isomorphism called the associator (A⊗B) ⊗ C
αA,B,C−→ A ⊗

(B ⊗ C)

• A natural isomorphism called the left unitor I ⊗A
λA−→ A

• A natural isomorphism called the right unitor A⊗ I
ρA−→ A

Recall λ naturally stands for left and ρ for right. The point here is that objects
are related by natural isomorphisms, and are not required to be straight up
equal. This distinction seems pathological, and so does the distinction between
left and right unitors. That's the annoying price one pays for generality: One
has to deal with distinctions between left and right, distinctions between nat-
ural isomorphisms and equalities, etc. But as I have previously stated, these
seemingly pedantic di�erences actually prove to be very relevant, even in the
context of physics.

Now, to ensure the proper behavior of the associators and unitors, a monoidal
category is required to satisfy additional axioms, which are called the triangle
and pentagon equations. These requirements are best stated in terms of com-
mutative diagrams
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(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

αA,I,B

ρA⊗ idA idA ⊗ λB

((A⊗B)⊗ C)⊗D

(A⊗ (B ⊗ C))⊗D

(A⊗B)⊗ (C ⊗D)

αA,B,C⊗ idD

αA⊗B,C,D αA,BC⊗D

A⊗ (B ⊗ (C ⊗D))

A⊗ ((B ⊗ C)⊗D)

idA ⊗ αB,C,D

αA,B⊗C,D

Additionally, since we are imposing that α, λ and ρ are natural transforma-
tions, then we have the following equations

(A⊗B)⊗ C

(A′ ⊗B′)⊗ C ′

A⊗ (B ⊗ C)

A′ ⊗ (B′ ⊗ C ′)

αA,B,C

αA′,B′,C′

(f ⊗ g)⊗ h f ⊗ (g ⊗ h)

I ⊗A

I ⊗B

A

B

λA

λB

idI ⊗ f f

ρA

ρB

f⊗ idI

A⊗ I

B ⊗ I

Now, a brief word on the role of these equations is in order. Firstly, the unit
object I is to be interpreted as the �empty� object. It being or not being there
makes absolutely no di�erence. The unitors establish the isomorphism of both
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I ⊗A and A⊗ I to A. This means that either of these composite objects is just
as good as A.

The triangle and pentagon equations establish the coherence of the unitors
and associators, stating that two ways of reorganizing a system are equal. This,
in turn, implies that any two such reorganizations are equal, which is the content
of MacLane's coherence theorem.

Theorem (MacLane's coherence theorem for monoidal categories): Given
the data of a monoidal category, if the triangle and pentagon equations hold,
any equation built from α, λ, ρ and their inverses holds.

Together, these equations also imply ρI = λI , and thus, there is actually no
distinction between left and right unitors for the unit object itself.

So, in summary, while the associators and unitors are non-trivial morphisms,
satisfying coherence implies that the tensor product obeys all the familiar prop-
erties it should, since the way we apply them does not actually matter in any
particular case.

Another theorem relates the parallel and sequential compositions:

Theorem (Interchange): Given four morphisms f : A → B, g : B → C and
h : D → E, j : E → F in a monoidal category, they satisfy the interchange law

(g ◦ f)⊗ (j ◦ h) = (g ⊗ j) ◦ (f ⊗ h)

The proof is simple enough that we can give it here as an example. We merely
use the de�nition of the tensor product functor, followed by the composition in
C ×C and functoriality of the tensor product ⊗:

(g ◦ f)⊗ (j ◦ h) ≡ ⊗ (g ◦ f, j ◦ h)
= ⊗ ((g, j) ◦ (f, h))
= (⊗ (g, j)) ◦ (⊗ (f, h))

= (g ⊗ j) ◦ (f ⊗ h) .

This concludes the proof.

2 The graphical calculus

In the last section, we described how the setting of monoidal categories, and the
de�nition of the tensor product ⊗ allows us to compose processes in parallel. For
morphisms f : A → B and g : C → D, we can draw their parallel composition
as

f ⊗ g f g=

A⊗ C

B ⊗D

A

B D

C
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The graphical calculus for monoidal categories is planar, and vertical compo-
sition, as in the previous blog post represents ◦, while horizontal juxtaposition
represents ⊗. Remarkably, this diagrammatic language is not informal, but
rather, is said to be both complete and sound. Completeness means that every
equation which can be typed for monoidal categories can be written in terms of
diagrams, while soundness means that equality of diagrams implies equality of
the corresponding typed equations and vice-versa.

Furthermore, the unit object I is drawn as the empty diagram, i.e. not
drawn, and therefore, the associators are also simply not drawn. Here, we write
the interchange theorem given in the previous section by arti�cially drawing
some brackets in the diagram representing sequential and parallel composition
of morphisms f : A → B, g : B → C and h : D → E, j : E → F .

f h

A

B E

D

g j

C F

f h
A

B E

D

g j

C F

The brackets merely indicate the interpretation we give to the diagram, but
removing them makes it clear that the graphical notation makes these identities
fairly trivial simply by looking at the diagrams. Thus, this graphical notation
makes the seemingly complex aspects of monoidal categories melt away: Unitors,
associators, the triangle and pentagon equations, the interchange theorem, and
other super�cial aspects are absorbed into the drawings themselves.

Furthermore, by planar isotopic deformation of the graphical calculus, one
can correctly represent well typed equations in a monoidal category. This can
be stated as a theorem

Theorem (Correctness of the graphical calculus for monoidal categories): A
well-typed equation between morphisms in a monoidal category follows from the
axioms if and only if it holds in the graphical language up to planar isotopy.

This mention of planar isotopy basically means �up to deformations� within
some rectangular region of the plane, with �input� wires terminating at the
bottom of the rectangle, and �output� wires terminating at the top. For instance,
boxes without inputs can be moved around so long as they do not cross wires:
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h f h=

̸= h

g

f

g

f

g

This correctness theorem states that, like the graphical calculus for the
generic graphical calculus of categories, in the setting of monoidal categories,
this graphical calculus of monoidal categories, is both sound and complete. I
will not delve deeper into these notions here, focusing now on a special type of
boxes which can occur in the graphical calculus, for �deleting� and �co-deleting�
morphisms. In the context of categorical quantum mechanics, these are often
called �e�ects� and �states�.

De�nition (State and e�ect): In a monoidal category, a state of an object A
is simply a morphism a : I → A. An e�ect of an object A is the dual notion,
consisting of a morphism a : A → I.

States and e�ects can be represented by triangles in the graphical notation.

a

A a

A

state: e�ect:

It may be the case that to specify an equality of morphisms, one merely has
to check how they a�ect states, and this motivates the notion of a �well-pointed
monoidal category�.

De�nition (Well-pointed, and monoidally well pointed monoidal categories):
A monoidal category is well-pointed if for all parallel pairs of morphisms f, g :
A → B, then f = g if and only if f ◦a = g◦a, for all states a : I → A. If it is the
case that for all parallel pairs of morphisms f, g : A1 ⊗A2 ⊗ · · · ⊗An → B, and
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all states a1, a2, . . . , an : I → A, f = g if and only if f ◦ (a1 ⊗ a2 ⊗ · · · ⊗ an) =
g ◦ (a1 ⊗ a2 ⊗ · · · ⊗ an), then the category is called monoidally well pointed.

The notion of monoidally well pointed is merely the generalization of well
pointed for parallel states. Now, the fascinating thing is that we can construct
familiar notions of product states and entangled states in this setting of category
theory, without referencing Hilbert spaces at all. Note, that in a monoidal
category we can have a morphism c : I → A⊗ B. Such a morphism is called a
joint state of objects A and B.

De�nition (Product state): A product state is a joint state c : I → A when it
is of the form a⊗ b ◦ λ−1

I , for a : I → A and b : I → B. Graphically, this reads

c

A B

a

A

b

B

=

De�nition (Entangled state): A state is entangled if it is not a product state.

I �nd such generic encoding of the behavior of quantum mechanics in the
generic setting of category theory very fascinating. In some future post I will
focus on examples of categories and monoidal categories, focusing on Set, Hilb,
and Rel, and will show that Rel, for instance, also admits a notion of entangled
states, parallel to the notion of entangled states we are familiar from the theory
of Hilbert spaces.

Generically, a diagram can be interpreted as a history of events, and a state
can be thought of as a �preparation�, whereas an e�ect can be thought of as a
�post-selection�, i.e. one repeats the entire history of events until the resulting
e�ect is measured.

3 Braided monoidal categories

I will now specialize further the notion of monoidal categories, called a braided
monoidal category. This is a monoidal category, which is equipped with an
additional natural isomorphism

A⊗B
σA,B→ B ⊗A, (1)

which speci�es how the tensor product permutes. This process is called braiding,
and gives braided monoidal categories their name. Coherence of this kind of
category cannot be speci�ed by the pentagon and triangle equations alone, and
in fact, one must impose additional requirements on the behavior of σ. The
requirements are the so-called hexagon equations
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(A⊗B)⊗ C

(B ⊗A)⊗ C

σ−1
A,B,C

σA,B⊗idC idB ⊗ σA,C

B ⊗ (C ⊗A)

(B ⊗ C)⊗A

α−1
B,C,A

σA,B⊗C

B ⊗ (A⊗ C)
αB,A,C

A⊗ (B ⊗ C)

A⊗ (B ⊗ C)

A⊗ (C ⊗B)

σA,B,C

σA,C⊗idBidA ⊗ σB,C

(C ⊗A)⊗B)

C ⊗ (A⊗B)

αC,A,B

σA⊗B,C

(A⊗ C)⊗B
α−1
A,C,B

A⊗ (B ⊗ C)

Braiding in the graphical notation can be included as

and the fact that σA,B admits an inverse for all objects A and B, can be
represented diagrammatically as
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This captures the some part of the natural geometric behavior of strings in
3D space. Furthermore, naturality of the braiding implies that we can �drag�
morphisms along strings which are braided. Finally, the hexagon equations can
also be represented graphically

Much like the simpler monoidal categories, braided monoidal categories also
have a complete and sound graphical calculus with the inclusion of this braiding
morphism, which can be stated as a theorem

Theorem (Correctness of the graphical calculus for braided monoidal cate-
gories): A well-typed equation between morphisms in a braided monoidal cat-
egory follows from the axioms if and only if it holds in the graphical language
up to spatial isotopy.

As an example, we can prove the so-called Yang-Baxter equation graphically
for braided monoidal categories. The idea is to simply slide the braidings past
each other in the following way
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The simplest example of a braiding in a monoidal category, is the canonical
braiding in Set, which is simply σA,B : A×B → B ×A, which acts by sending
(a, b) 7→ (b, a) ,∀a ∈ A, b ∈ B. Similarly canonical braidings can be de�ned
for Rel and Hilb as well. In particular, all these braidings have an additional
property called symmetry.

De�nition (Symmetric Monoidal category): A monoidal category C is sym-
metric when

σB,A ◦ σA,B = idA⊗B , (2)

for all objects A and B in Ob(C).
The braiding is often called the symmetry. Graphically, we can write this

condition as

and furthermore, a symmetric monoidal category makes no distinction be-
tween �under-crossings� and �over-crossings�, which can be written as an equality
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Thus, for symmetric monoidal categories, we can write the symmetry, cor-
responding to the single type of crossing, as

For symmetric monoidal categories, one also has a notion of correctness of
the graphical calculus, however, one has to mod out by the equality of over- and
under-crossings. Stated as a theorem, this reads

Theorem (Correctness of the graphical calculus for symmetric monoidal cat-
egories): A well-typed equation between morphisms in a symmetric monoidal
category follows from the axioms if and only if it holds in the graphical language
up to graphical equivalence.

The part where I write �up to graphical equivalence means precisely this
modding out by equivalence of braidings. Perhaps this can be formulated as
isotopy in four dimensional space, this is not clear in the literature. An impor-
tant example of symmetric monoidal categories, besides Set, Rel, and Hilb,
and one which I most de�nitely return to in future posts is Rep(G). This is the
group of �nite-dimensional representations of a �nite group G, in which

1. Objects are �nite-dimensional representations of G

2. Morphisms are intertwiners for the group action

3. The tensor product is the tensor product of representations

4. The unit object is the trivial action of G on the one-dimensional vector
space

5. The symmetry is inherited from Vect

One of these days I may go into representation theory a bit deeper, and then I
can cover these notions in more detail. For now, I leave them as open subjects
to cover.

4 More to come

This has been a brief introduction to monoidal categories and diagrams. As
per the previous post I have left out many examples of the famous categories,
Set, Rel, and Hilb, which are usually studied in this context. I have also
left out discussion about monoidal functors, strict categories, and the coherence
theorem, which I will cover in the future, and have already written a bunch
about. To avoid making this post longer, however, I will leave things here for
now. I am thinking about making a post with a bunch of examples once I get
the formal stu� out of the way.
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One thing I also intend to do at some point is to make a series of posts about
representation theory, of �nite and Lie groups. This will be a large enterprise
when I get to it, but one which I am looking forward to, and which will eventu-
ally trace back to categories, and speci�cally, Rep(G). The idea is that I will
someday get to use these things to talk about a categorical perspective of QFT
and TQFT. Stay posted for all of that! Of course, before all of that I still have to
talk about a bunch of stu� regarding categories, namely, about linear structure,
and duality, to get to the main goal for now, which is introducing monoids and
commonoids as categories with a diagrammatic language, Frobenius and Hopf
algebras, and all that jazz.


